Chem. Ber. 119, 1077-1082 (1986)

2-Oxosulfonamide, III¹⁾

Reaktion von 2-Oxopropansulfonamid mit 2-Chlorbenzaldehyd und anderen substituierten Benzaldehyden

Albert Bender, Dieter Günther*, Erich F. Paulus und Rainer Wingen

Hauptlaboratorium der Hoechst AG, Postfach 800320, D-6230 Frankfurt 80

Eingegangen am 19. August 1985

2-Oxopropansulfonamid (1) reagiert mit m- und p-substituierten aromatischen Aldehyden vom Typ des Benzaldehyds zu 1,4,3-Oxathiazinanen (3), mit 2-Chlorbenzaldehyd hingegen zun neuartigen 1,5,2,6-Dithiadiazocan 4a, dessen Identität durch Röntgenstrukturanalyse gesichert wird. Da auch weitere o-substituierte Benzaldehyde mit 1 dieses System bilden, werden sterische Wechselwirkungen als entscheidend für den unterschiedlichen Reaktionsverlauf angenommen, wobei eine gemeinsame Zwischenstufe diskutiert wird.

2-Oxosulfonamides, III¹⁾

Reaction of 2-Oxopropanesulfonamide with 2-Chlorobenzaldehyde and other Substituted Benzaldehydes

2-Oxopropanesulfonamide (1) reacts with m- und p-substituted benzaldehydes to yield 1,4,3oxathiazinanes (3), but with 2-chlorobenzaldehyde the novel 1,5,2,6-dithiadiazocane 4a is formed. Its structure is confirmed by X-ray structure analysis. As this system is formed also by reaction of other o-substituted benzaldehydes with 1, steric interactions are thought to be decisive for the different course of the reaction, and a common intermediate is discussed.

Wir berichteten bereits über zahlreiche neue Heterocyclen, die durch Umsetzung von 2-Oxopropansulfonamid (1) mit Carbonylverbindungen zugänglich sind ¹⁾. Zu den am vielseitigsten anwendbaren Reaktionen zählt dabei die mit Benzaldehyden, wobei sich durch Wahl der Reaktionsbedingungen unabhängig voneinander vier verschiedene Systeme aufbauen lassen. Ihre Bildung wird durch thermodynamische oder kinetische Kontrolle gesteuert. Wir haben nun gefunden, daß bei letzterem Reaktionstyp Substituenteneinflüsse am Benzaldehyd maßgebend für den Reaktionsverlauf sein können. Diese lassen sich gezielt zum Aufbau eines weiteren neuen Heterocyclus verwenden.

Unter Basenkatalyse entsteht aus 1 mit zwei Moläquivalenten Aldehyd das sechsgliedrige 1,4,3-Oxathiazinan (3), wobei sich die Reaktion nur auf den unsubstituierten und in p- bzw. m-Stellung substituierten Benzaldehyd anwenden läßt¹).

Mit 2-Chlorbenzaldehyd wird dagegen ein abweichender Reaktionsverlauf unter Bildung des achtgliedrigen 1,5,2,6-Dithiadiazocans (4a) beobachtet, wobei sich 1 und Aldehyd formal im Molverhältnis 2:2 umsetzen.

Experimentelle Befunde

Die Reaktion zwischen 1 und 2-Chlorbenzaldehyd wird in Ethanol bei 20°C in Gegenwart katalytischer Mengen Kaliumhydroxid durchgeführt. Diese Reaktionsbedingungen sind auch die, die zur Bildung von 3 führten.

Bei beiden Reaktionstypen lassen sich in den Reaktionsmischungen keine eindeutigen Hinweise (DC, ¹H-NMR) auf das Vorliegen signifikanter Mengen des jeweilig anderen Produkts finden. Selbst Abweichungen im stöchiometrischen Verhältnis der Edukte erbringen keine Änderung der Reaktionsweise, sondern gehen lediglich zu Lasten der Ausbeuten, die bis zu 90% betragen. Die nichtumkristallisierten Produkte fallen bereits in analysenreiner Form an.

Kristall- und Molekülstruktur von 4a

4a kristallisiert aus Chlorbenzol in zwei Modifikationen, deren Moleküle jedoch die gleiche Konformation besitzen, wie man einer Kleinste-Quadrate-Überlagerung entnehmen kann. Da die den weitaus überwiegenden Anteil (ca. 95%) der Probe darstellende Modifikation in einer Überstruktur (Raumgruppe P $2_{1/n}$ \rightarrow klassengleiche Untergruppe von C2/c) mit zwei Molekülen in der asymmetrischen Einheit kristallisiert, bereitete deren Parameterverfeinerung große Schwierigkeiten, weshalb die Parameter nur von der Minderheits-Modifikation wiedergegeben werden sollen.

Abb. 1. Molekülstruktur und Schwingungsellipsoide (20% Wahrscheinlichkeit) von 4a

Der Achtring liegt in einer Kronenformation vor, wie die Auslenkungen seiner Atome aus einer besten Ebene durch den Ring zeigen: S1 0.23, N1 -0.43, C1 0.35, C2 -0.15, S2 0.22, N2 -0.41, C3 0.36 und C4 -0.17 Å.

Der Phenylring C9/C14 bildet einen Winkel von 60.8° mit dieser besten Ebene, während es beim zweiten Phenylring 75.5° sind. Die entsprechenden Winkel für die Acetylgruppen betragen 84.5 bzw. 87.4°. Dies alles ist ein Beweis für die geringe Symmetrie des Moleküls. Es fällt auf, daß im Kristallverband keine intermolekularen Wasserstoffbrückenbindungen ausgebildet werden, obwohl Donatoren

Chem. Ber. 119 (1986)

(NH-Gruppen) und Akzeptoren (Carbonyl-Gruppen) vorhanden sind. Es muß also eine intramolekulare Absättigung stattfinden: N1 hat zu O5 einen Abstand von 2.777 Å, N2 zu O6 einen Abstand von 2.868 Å. Auch in diesen etwas unterschiedlichen Abständen kommt die geringe Symmetrie des Achtringes zum Ausdruck.

Diskussion

Unter Berücksichtigung der experimentellen Befunde läßt sich folgendes Reaktionsschema entwerfen:

Die basenkatalysierte Umsetzung von 1 mit Aldehyden zu 3 verläuft unter Addition der Methylen- und Sulfonamidgruppe an zwei Moleküle Aldehyd zur nicht beobachteten Zwischenstufe 2. Unter Wasserabspaltung erfolgt dann Stabilisierung zu 3.

Überträgt man den Befund der Kristallstrukturanalyse auf die Verhältnisse in Lösung, so kann angenommen werden, daß durch den o-Chlor-Substituenten die Tendenz der Phenylringe, sich senkrecht zum restlichen Molekülgerüst einzustellen, so verstärkt wird, daß die beiden Molekülhälften voneinander abgedrängt werden. Intramolekulare Wasserabspaltung ist somit nicht mehr möglich, es erfolgt Stabilisierung durch Kondensation mit einem weiteren Molekül 1 und letztlich Bildung des Achtringes **4a**.

Mit Hilfe der Kristallstrukturanalyse können dessen in $[D_6]DMSO$ bei 60 MHz gemessene ¹H-NMR-Signale zugeordnet werden. Zentriert bei $\delta = 8.4$ bzw. 5.8 erscheint das AB-System der Protonen der Amid- bzw. Benzylgruppierungen. Man kann diese als zueinander axialständig auffassen; sie weisen die für eine solche Anordnung zu erwartende große Kopplungskonstante von 10 Hz auf. Der bei höherem Feld liegende Teil des AB-Spektrums wird durch Kopplung der benzylisch gebundenen mit den Methin-Protonen, die dann äquatorialständig sind und bei 4.8 ppm in Resonanz treten, zu einem Dublett von Dubletts aufgespalten. Die kleine Kopplungskonstante von 2 Hz stimmt mit einer solchen Anordnung über-

Chem. Ber. 119 (1986)

ein. Mit D_2O sind die Amidprotonen H/D-tauschbar, wobei das Spektrum zum AB-System der Benzyl- und Methinprotonen vereinfacht wird.

Den IR- und NMR-Spektren sowie der Zusammensetzung der Produkte nach zu schließen reagieren weitere o-substituierte Benzaldehyde (z.B. 2-Brom-, 2-Fluor- und 2,6-Dichlorbenzaldehyd) ebenfalls zu Dithiadiazocanen. Die Tatsache, daß auch 3-Phenoxybenzaldehyd, der den sperrigen Substituenten in *m*-Position trägt, mit 1 einen Achtring bildet, ist ein weiterer Hinweis auf die Beeinflußbarkeit der Reaktionsrichtung durch den Raumbedarf der Substituenten am Aldehyd.

Experimenteller Teil

IR: Gerät Perkin-Elmer Infracord 157. – ¹H-NMR: Gerät Varian T 60. – Schmelzpunkte (nicht korrigiert): Gerät Büchi SMP-20.

4	R	Ausb. Schmp. [%] [°C]		Summenformel (Molmasse)		c	Н	Analyse Halogen		N S
a	2-Chlor-	37	277	$\begin{array}{c} C_{20}H_{20}Cl_2N_2O_6S_2\\ (519.4)\end{array}$	Ber. Gef.	46.2 46.3	3.9 3.9	Cl 13.7 13.6	5.4 5.2	12.3 12.1
b	2-Fluor-	38	272	$\begin{array}{c} C_{20}H_{20}F_2N_2O_6S_2\\ (486.5)\end{array}$	Ber. Gef.	49.5 49.9	4.1 4.0	F 7.8 7.6	5.8 5.5	13.2 13.0
c	2-Brom-	43	280	$\begin{array}{c} \mathrm{C_{20}H_{20}Br_{2}N_{2}O_{6}S_{2}}\\ (608.15)\end{array}$	Ber. Gef.	39.5 39.6	3.3 3.4	Br 26.3 27.1	4.6 4.4	10.5 10.5
d	2,6-Dichlor-	19	> 290	$C_{20}H_{18}Cl_4N_2O_6S_2$ (588.3)	Ber. Gef.	40.8 40.4	3.1 3.4	Cl 24.1 24.0	4.8 4.6	10.9 11.2
e	3-Phenoxy-	38	245	$\begin{array}{c} C_{32}H_{30}N_2O_8S_2\\ (634.7)\end{array}$	Ber. Gef.	60.6 60.5	4.8 4.8	_	4.4 4.3	10.1 10.2

Tab. 1. 4.8-Diacetyl-3./-bis(R-phenyl)-1.5.2.6-dithiadiazocan-1.1.5.5-teti
--

Tab. 2. ¹H-NMR-Daten, 60 MHz, δ-Werte in ppm (TMS); 4d wurde wegen seiner Schwerlöslichkeit in [D₆]DMSO in CF₃CO₂D gemessen, sonst [D₆]DMSO als Lösungsmittel

4	NH*)	Ar-H (m)	Ar-CH- (2 H)	COCH-SO ₂ (d, 2H)	CH3 (s, 6H)
a	8.4	7.4 (8H)	5.8 (dd, $J = 2$ Hz, 10 Hz)	4.8 (J = 2 Hz)	2.0
b	8.4	7.3 (8H)	5.7 (dd, $J = 2$ Hz, 10 Hz)	4.8 (J = 2 Hz)	2.0
с	8.4	7.4 (8H)	5.8 (dd, $J = 2$ Hz, 10 Hz)	4.8 (J = 2 Hz)	2.0
d	_	7.4 (6H)	6.9 (d, $J = 9$ Hz), bzw.	5.8 (J = 9 Hz)	2.4
e	8.4	7.3 (18 H)	5.4-4.8	(m, 4H)	2.0

^{a)} d, J = 10 Hz, 2H.

Allgemeine Arbeitsvorschrift zur Darstellung der Dithiadiazocan-tetraoxide 4: 0.10 mol 1, 0.10 mol des Aldehyds und 0.20 g Kaliumhydroxid werden in 95proz. Ethanol 18 h bei 20°C gerührt. Der abgeschiedene Feststoff wird abfiltriert und verlustreich aus Chlorbenzol

Chem. Ber. 119 (1986)

umkristallisiert. Die hergestellten Verbindungen werden in den Tab. 1 und 2 charakterisiert. Ihre IR-Spektren (KBr) weisen charakteristische Absorptionen bei 3340 (SO₂NH), 1730 (C=O) und 1350 bzw. 1120 cm⁻¹ (SO₂N) auf.

Röntgenstrukturanalyse von 4a: $C_{20}H_{20}Cl_2N_2O_6S_2$ (519.4); triklin, $P\bar{1}$, a = 9.438(1), b = 11.206(2), c = 11.209(1) Å, $\alpha = 92.15(1)^\circ$, $\beta = 94.58(1)^\circ$, $\gamma = 105.05(6)^\circ$, Z = 2, d_{ber} . 1.514, d_{exp} . 1.50 gcm⁻¹.

Tab. 3. Atomkoordinaten von 4a in Einheiten der Zellkonstanten und isotrope Temperaturkoeffizienten B in Å². Die Standardabweichungen sind in Klammern in Einheiten der letzten Dezimalstelle angegeben

Atom	x	Y	Z	B
S1	.0975 (1)	.1436 (1)	.3771 (1)	3.7 (0)
52	0580 (1)	.3188 (1)	.1041 (1)	3.3 (0)
CL1	.2097 (1)	.6235 (1)	.3653 (1)	6.6 (0)
CL.2	~.3900 (1)	.1313 (1)	.4053 (1)	6.0 (0)
01	.0467 (3)	.2223 (2)	.4578 (2)	4.5 (1)
02	.1832 (3)	.0640 (2)	.4230 (2)	5.0 (1)
03	~.0792 (3)	.3378 (2)	0217 (2)	4.2 (1)
04	1339 (3)	.3706 (2)	.1894 (2)	4.1 (1)
05	.2431 (3)	.2474 (3)	.0433 (2)	6.1 (1)
06	.0537 (3)	0190 (2)	.1279 (2)	4.8 (1)
N1	.1887 (3)	.2306 (2)	.2820 (2)	3.2 (1)
N2	0981 (3)	.1719 (2)	.1193 (2)	3.1 (1)
C01	.1875 (4)	.3615 (3)	.2724 (3)	3.0 (1)
C02	.1365 (4)	.3852 (3)	.1443 (3)	3.1 (1)
C03	~.1596 (4)	.1146 (3)	.2253 (3)	3.1 (1)
C04	0610 (4)	.0427 (3)	.2929 (3)	3.1 (1)
C05	.2266 (4)	.3512 (3)	.0496 (3)	3.5 (1)
C06	.2956 (5)	.4452 (4)	0310 (4)	5.8 (2)
C07	0115 (4)	-,0514 (3)	.2136 (3)	3.2 (1)
C08	0470 (5)	1814 (3)	.2495 (3)	5.6 (2)
C09	.3429 (4)	,4460 (3)	.3075 (3)	3.2 (1)
C10	.3625 (4)	.5666 (3)	.3490 (3)	4.0 (1)
C11	.5026 (5)	.6449 (3)	.3838 (3)	5.4 (1)
C12	.6222 (4)	.6005 (4)	.3743 (3)	5.5(1)
C13	.6081 (4)	.4818 (4)	.3327 (3)	5.0(1)
C14	.4672 (4)	.4042 (3)	.2991 (3)	3.9(1)
C15	3147 (4)	.0314 (3)	.1991 (3)	3.2 (1)
C16	~.4212 (4)	.0312 (3)	.2777 (3)	3.9 (1)
C17	5612 (5)	0459 (4)	.2572 (4)	5.1 (2)
C18	5939 (5)	1271 (4)	.1589 (4)	5.4 (2)
C19	4917 (5)	1313 (4)	.0814 (4)	5.2 (2)
C20	3523 (4)	~.0508 (3)	.1003 (3)	4.2 (1)

Tab. 4. Bindungslängen (in Å) und -winkel (in Grad) der Nichtwasserstoffatome von 4a

Bindung	Abstand	Bindung	Winkel	Bindung	Winkel
S1 -01	1.434 (3)	51 -N1 -C01	123.2 (2)	86 -C07 -C04	120.5 (3)
S1 -82	1,434 (3)	S1 -C04 -C03	112.6 (2)	D6 ~C07 -C08	123.0 (3)
S1 -N1	1.612 (3)	S1 -C04 -C07	109.3 (2)	N1 -51 -C04	106.8 (1)
S1 -C04	1,795 (3)	52 -N2 -C03	123.2 (2)	N1 -C01 -C02	111.2 (2)
52 -03	1.441 (2)	52 -C02 -C01	114.1 (2)	N1 -C01 -C07	110.7 (3)
32 -04	1.431 (3)	S2 -C02 -C05	111.0 (2)	N2 -52 -C02	107.6 (2)
S2 -N2	1.607 (3)	CL1 -C10 -C09	119.7 (3)	N2 -C03 -C04	113.7 (3)
G2 -CO2	1.805 (3)	CL1 -C10 -C11	118.3 (3)	N2 -C03 -C15	113.2 (2)
CL1 -C10	1.741 (4)	CL2 -C16 -C15	120.1 (2)	C01 -C02 -C05	113.7 (3)
CL2 -C16	1,738 (4)	CL2 -C16 -C17	118.1 (3)	C01 -C09 -C10	121.2 (3)
05 -005	1.213 (5)	01 -51 -02	120.1 (1)	CO1 -CO7 -C14	121.3 (3)
06 -007	1.199 (4)	01 -S1 -N1	107.3 (1)	C02 -C01 -C09	107.6 (2)
N1 -C01	1.474 (4)	01 -S1 -CO4	107.9 (2)	C02 -C05 -C06	119.4 (3)
N2 -C03	1.462 (4)	02 -S1 -N1	108.7 (2)	C03 -C04 -C07	114.8 (3)
CO1 -CO2	1.538 (4)	02 -S1 -C04	105.4 (2)	C03 -C15 -C14	120.9 (3)
CO1 -CO9	1.522 (4)	03 -52 -04	120.7 (2)	C03 -C15 -C20	121.3 (3)
C02 -C05	1.509 (5)	03 -S2 -N2	107.B (1)	C04 -C03 -C15	109.5 (3)
CO3 -CO4	1.553 (5)	03 -S2 -C02	104.6 (1)	C04 -C07 -C08	116.4 (3)
C03 -C15	1.516 (4)	04 -52 -N2	107.1 (1)		
C04 -C07	1.540 (5)	04 -52 -C02	106.7 (1)		
C05 -C06	1.467 (5)	05 -005 -002	119.2 (3)		
C07 -C08	1.486 (5)	05 -005 -006	121.4 (4)		

Chem. Ber. 119 (1986)

Die Röntgenintensitäten wurden auf einem rechnergesteuerten 4-Kreisdiffraktometer der Fa. Nicolet vermessen (Mo- K_{α} -Strahlung; 29/9-Scan; $\vartheta_{max} = 28^{\circ}$; 4092 von 5530 unabhängigen Reflexen mit einer Intensität $>1\sigma$). Das Phasenproblem wurde mit den Methoden der direkten Phasenbestimmung gelöst^{2,3)}. Einschließlich der anisotropen Temperaturkoeffizienten der Nichtwasserstoffatome wurden 351 Parameter in einem Kleinste-Quadrate-Verfahren nach der Kaskadenmethode verfeinert⁴⁾. Die Methylgruppen wurden als starre idealisierte Gruppen mit C-H-Bindungslängen von 0.96 Å in die Parameterverfeinerung eingegeben, während die Koordinaten der anderen Wasserstoffatome einer Differenz-Fourier-Synthese der Elektronendichte entnommen und individuell verfeinert werden konnten. Das verwendete Gewichtssystem war $w = 1/\sigma^2(F)$. Bei 3738 Freiheitsgraden betrug $R_1 =$ 0.102 und $R_2 = 0.0396$. Die Atomformfaktoren wurden den International Tables entnommen^{5,6]}. Als Programmsystem kam SHELXTL⁴⁾ auf dem Minicomputer Nova 3-12zur Anwendung. Zusätzliche Ergebnisse unnd Meßdaten wurden deponiert^{η}.

CAS-Registry-Nummern

- -1: 84760-10-1 / 4a: 99922-44-8 / 4b: 99922-45-9 / 4c: 99922-46-0 / 4d: 99922-47-1 / 4e: 99922-48-2 / 2-chlorobenzaldehyde: 89-98-5 / 2-fluorobenzaldehyde: 446-52-6 / 2-bromobenzaldehyde: 6630-33-7 / 2,6-dichlorobenzaldehyde: 83-38-5 / 3-phenoxybenzaldehyde: 39515-51-0
 - ¹⁾ II. Mitteil.: A. Bender, D. Günther und R. Wingen, Liebigs Ann. Chem. 1985, 579.
 - G. Germain, P. Main und M. M. Woolfson, Acta Cryst., Sect. B 26, 274 (1970).
 G. Germain und M. M. Woolfson, Acta Cryst., Sect. B 24, 91 (1968).

 - ⁴⁾ G. M. Sheldrick, SHELXTL, an Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Universität Göttingen 1984.
 - ⁵⁾ International Tables for Crystallography, Vol. A, Space-Group Symmetry, D. Reidel Publishing Company, Dordrecht, Boston 1983.
 - ⁶⁾ International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham 1974.
 - ⁷ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51 680, der Autoren und des Zeitschriftenzitats angefordert werden.

[193/85]